A.D.M COLLEGE FOR WOMEN (AUTONOMOUS),

(Nationally Re-Accredited with 'A' Grade by NAAC- 4th Cycle)

NAGAPATTINAM-611 001

PG & RESEARCH DEPARTMENT OF MATHEMATICS

(for the candidates admitted from the academic year 2024-2025)

M.Sc., MATHEMATICS

SYLLABUS

2024-2026

A.D.M COLLEGE FOR WOMEN (AUTONOMOUS), Nagapattinam

PG Programme - M.Sc Mathematics

(For the candidates admitted from 2024 – 2025 onwards)

Bloom's Taxonomy Based Assessment Pattern

Knowledge Level

K1 – Acquire/Remember	K2 – Understanding	K3 – Apply	K4 – Analyze	K5 – Evaluate	K6 – Create

1. Part I, II and III

Theory (External + Internal = 75 + 25 = 100 marks)

External/Internal								
Knowledge Level	Section	Marks	Hrs.	Total	Passing Mark			
	A (A	$10 \times 2 = 20$			1120222			
K1-K3	A (Answer all)	$10 \times 2 = 20$						
K3-K6	B (Either or pattern)	$5 \times 5 = 25$	3	75	50			
K3-K6	C (Answer 3 out of 5)	$3 \times 10 = 30$						

PG & RESEARCH DEPARTMENT OF MATHEMATICS

(for the candidates admitted from the academic year 2024-2025) M.Sc., Mathematics

Programme Educational Objectives (PEO):

PEO 1:	To gain analytical skills in the field of Mathematics.
PEO 2:	To develop the logical thinking skills.
PEO 3:	To understand the concepts of real and complex analysis.
PEO 4:	To use the knowledge of pure and applied mathematics to solve complex Mathematical Problems.
PEO 5:	To invent innovative and novel ideas in modelling the real world problems.
PEO 6:	To crack the exam approved by UGC namely CSIR – NET (JRF/Lectureship) & SET.

Programme Outcomes (POs) PG

On completion of the course the learner will be able to

PO 1:	understand the fundamental axioms in mathematics and capable of developing ideas based on them.
PO 2:	maintain and develop the problem-solving skills.
PO 3:	use the mathematical ideas in modelling the real world problems
PO 4:	analyse mathematical reasoning.
PO 5:	demonstrate and communicate the mathematical concepts clearly.
PO 6:	perform research activities independently towards Ph.D Degree in Mathematics

Programme Specific Outcomes (PSO) M.Sc.,

On completion of the course the learner will be able to

PSO 1:	connect mathematics to real life problems in their lives.			
PSO 2:	do intensive research in pure and applied mathematics.			
PSO 3:	analyse problems of industry and society.			
PSO 4:	model and provide solutions to scientific and real life situations.			
PSO 5:	prepare for a career in which critical thinking is a central feature.			
PSO 6:	sportively attend the examinations approved by UGC namely CSIR – NET (JRF/Lectureship) & SET.			

PG AND RESEARCH DEPARTMENT OF MATHEMATICS COURSE STRUCTURE OF THE PG PROGRAMME - M.Sc MATHEMATICS

M.Sc. Mathematics 2024-2026 Batch

STRUCTURE OF THE PROGRAMME

Course	No. of Papers	Hours	Credit
Core Courses	12	72	54
Core Choice Courses	3	18	12
Elective Courses	3	16	11
Entrepreneurship/ Industry Based Course	1	4	3
Internship (III to IV semester Vacation)	-	-	2
Skill Enhancement Course	2	4	4
Project	1	6	4
Value added Courses (Extra Credit) *	2*	60*	4* (each 2)
Total	22 + 2*	120 +60*	90+4*

^{*}The Value added Courses credit will not be included in the total CGPA. These courses are Extra Credit Courses. Instructional Hours is 30 Hours.

Passing Minimum

A candidate shall be declared to have passed in each course if she secures not less than 50% marks out of 75 marks (i.e., 40 marks) in the End Semester Examination (SE) and 40% out of 25 marks (i.e., 10 marks) in the Continuous Internal Assessment.(CIA).

A.D.M. COLLEGE FOR WOMEN (AUTONOMOUS), NAGAPATTINAM DEPARTMENT OF MATHEMATICS M.Sc Mathematics 2024- 2026 Batch SCHEME OF THE PROGRAMME

Course Structure under CBCS

(for the candidates admitted from the academic year 2024-2025 onwards)

	,	,	T		E	Ma	ırks	Total
Sem.	Course Code	Course	Ins. Hrs	Credit	Exam Hours	CIA	SE	Marks
	Core Course - I	Algebra	6	5	3	25	75	100
	Core Course - II	Real Analysis	6	5	3	25	75	100
	Core Course – III	Ordinary Differential Equations	6	4	3	25	75	100
I	Core Choice Course – I	Advanced Graph Theory	6	4	3	25	75	100
	Elective Course – I	Advanced Numerical Analysis/ Financial Mathematics	6	4	3	25	75	100
		TOTAL	30	22	15	125	375	500
	Core Course – IV	Complex Analysis	6	5	3	25	75	100
	Core Course - V	Linear Algebra	6	4	3	25	75	100
	Core Course - VI	Partial Differential Equations	6	4	3	25	75	100
II	Core Choice Course - II	Advanced Probability Theory	6	4	3	25	75	100
	Elective Course – II	Fuzzy sets and its Applications / Non Linear Differential Equations	4	3	3	25	75	100
	Skill Enhancement Course - I	Programming	2	2	3	40	60	100
	Value Added Course I*	Industry Academia module / Internship/ Short term MOOC or SWAYAM courses (Math relevant or Interdisciplinary Courses)/ Certificate Courses	-	2*	-	-	-	-
		TOTAL	30	22+ 2*	18	165	435	600
	Core Course – VII	Measure and Integration	6	5	3	25	75	100
III	Core Course – VIII	Topology	6	5	3	25	75	100
	Core Course – IX	Integral Equations and Transforms	6	4	3	25	75	100
	Core Choice Course III	Classical Dynamics	6	4				
	Entrepreneurship/ Industry Based Course - I	Advanced Operations Research / Discrete Mathematics	4	3	3	25	75	100
	Skill Enhancement Course - II	Numerical analysis using Scilab	2	2	3	40	60	100
	Value Added Course II*	Mathematics for CSIR NET/SET/ TRB/ Competitive Examinations/ Computer Skill Programming Courses	-	2*	-	-	-	-
	Internship		-	2	-	-	-	-
		TOTAL	30	25+ 2*	15	140	360	500

	Core Course – X	Functional Analysis	6	5	3	25	75	100
IV	Core Course – XI	Fluid Dynamics	6	4	3	25	75	100
	Core Course – XII	Differential Geometry	6	4	3	25	75	100
	Elective Course – III	Mathematical Modelling / Combinatorics	6	4	3	25	75	100
	Project	Project	6	4	3	20	80	100
		TOTAL	30	21	15	120	380	500
		GRAND TOTAL	120	90+4*	60	495	1505	2100

Semester-I / Core Course-I(CC I)	ALGEBRA	Course Code:
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks:75	Total Marks: 100

Cognitive Level Course Objectives	 K 1 - Acquire/ Remember K2 - Understand K3 - Apply K4 - Evaluate K5 - Analyze K6 - Create The Course aims To Study advanced concepts in Group Theory. To gain the knowledge about Polynomial Rings over Fields. To learn about dual spaces. To understand the extension fields and finite fields. To interpret the elements of Galois Theory. 	
UNIT	CONTENT	HOURS
UNIT I	Group Theory: A Counting Principle – Normal Subgroups	18 Hours
	and Quotient Groups –Homomorphism – Permutation Groups	
	- Another Counting Principle- Sylow's theorems.(Chapter	
	II: Sec 2.5 – 2.7, 2.9 – 2.12)	
UNIT II	Ring Theory: Polynomial Rings – Polynomial Rings over	18 Hours
	Rational Field – Polynomial Rings over Commutative Rings.	
	(Chapter III: Sec. 3.9, 3.10 & 3.11)	
UNIT III	Vector Spaces and Modules: Dual Spaces – Inner Product	18 Hours
	Spaces - Modules.(Chapter IV: Sec 4.3, 4.4 &4.5)	
UNIT IV	Fields: Extension Fields – Roots of Polynomials –More	18 Hours
	About Roots. (Chapter V: Sec 5.1, 5.3, 5.5)	
UNIT V	Fields: The Elements of Galois Theory – Finite Fields.	18 Hours
	(Chapter V: Sec 5.6 & Chapter 7: Sec 7.1)	

1. I.N. Herstein, Topics in Algebra, Second Edition, John Wiley & Sons Pvt. Ltd, 1975

Reference Books:

1. Serge Lang, Algebra, Revised 3rd Edition, Springer Verlang, 2002.

2. A.R. Vasistha, Modern Algebra, 3rd Edition, 1973.

Web - Resources:

- 1. https://library.rcc.edu/algebra
- 2. http://mathandmultimedia.com/2010/01/18/free-algebra-ebooks

Course Outcomes

On Completion of the Course, Students should be able to

CO1 : understand Sylow's theorem and its applications

CO2 : analyze the various types of polynomials CO3 : develop the knowledge about modules

CO4 : evaluate the roots and characteristics of polynomials.

CO5 : apply finite fields in Galois Theory

Mapping of Course outcomes with Programme Outcomes/ Programme Specific Outcomes

CO/PO		PO]	PSO		
	1	2	3	4	5	6	1	2	3	4	5	6
CO1	S	S	M	M	S	S	M	S	M	M	M	S
CO2	S	S	S	M	S	S	S	S	S	S	S	S
CO3	M	S	M	M	W	M	M	S	M	M	M	S
CO4	S	S	S	M	S	S	S	S	S	S	S	S
CO5	S	S	M	M	S	S	M	S	M	M	M	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-I / Core Course-II(CC II)	REAL ANALYSIS	Course Code:
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

Course	K 1 - Acquire/ Remember K2 - Understand K3 - Apply K4 - Evaluate K5 - Analyze K6 - Create The Course aims • To study the basic topological concepts.	
Objectives	 To determine the limits and continuity of functions. To learn about Riemann –Stieltjes integral. 	
	• To know the uniform convergence of functions and the Stone – V	Veierstrass Theorem.
	To discuss about Inverse and Implicit Function Theorems.	
UNIT	CONTENT	HOURS
UNIT I	Basic Topology: Metric spaces – Compact sets – Perfect sets – Connected sets. (Chapter II: Sec 2.15 – 2.47)	18 Hours
UNIT II	Continuity: Limits of Functions – Continuous Functions – Continuity and Compactness – Continuity and Connectedness – Discontinuities – Monotonic Functions – Infinite Limits and Limits at infinity. (Chapter IV)	18 Hours
UNIT III	The Riemann - Stieltjes Integral: Definition and Existence of the integral – Properties of the integral – Integration and Differentiation – Integration of Vector – valued Functions – Rectifiable Curves.(Chapter VI)	18 Hours
UNIT IV	Sequences and Series of Functions: Discussion of Main Problem – Uniform Convergence – Uniform Convergence and Continuity – Uniform Convergence and Integration – Uniform Convergence and Differentiation – Equicontinuous Families of Functions – The Stone - Weierstrass Theorem. (Chapter VII: Sec 7.1 – 7.27)	18 Hours
UNIT V	Functions of Several Variables: Linear Transformations – Differentiation – The Contraction Principle – The Inverse Function Theorem – The Implicit Function Theorem. (Chapter IX: Sec 9.1 – 9.29)	18 Hours

Walter Rudin, Principles of Mathematical Analysis, Third Edition , Mc Graw Hill International Book Company, New York, 1976

Reference Books:

- 1. R.G. Bartle, The Elements of Real Analysis, 3rd Edition, Wiley International, 1994.
- 2. Tom M Apostol, Mathematical Analysis, Second Edition, Narosa Publishing House, 1974.

Web - Resources:

- 1. http://www.freebookcentre.net/Mathematics/Real-Analysis-Books.html
- 2. https://carma.newcastle.edu.au/resources/jon/Preprints/Books/Other/TimesReal.pdf.

Course Outcomes

On Completion of the Course, Students should be able to

CO1 : acquire the basic topological properties on metric spaces.
 CO2 : interpret the continuity and discontinuity of functions.
 CO3 : analyze the Riemann - Stieltjes integral and their properties.
 CO4 : develop the knowledge of sequence and series of functions.
 CO5 : understand functions of several variables.

Mapping of Course outcomes with Programme Outcomes/ Programme Specific Outcomes

CO/PO			PO					PSO					
	1	2	3	4	5	6	1	2	3	4	5	6	
CO1	S	S	S	M	S	S	S	S	M	M	S	S	
CO2	S	S	M	S	S	S	S	S	M	S	S	S	
CO3	S	S	M	S	S	S	S	S	M	S	S	S	
CO4	S	S	M	S	S	S	S	S	M	S	S	S	
CO5	S	S	M	S	S	S	S	S	M	S	S	S	

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-I / Core Course-III (CC III)	ORDINARY DIFFERENTIAL	Course Code:
	EQUATIONS	
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

	K 1 - Acquire/ Remember K2 - Understand	
Cognitive		
Level	K3 - Apply K4 - Evaluate	
	K5 - Analyze K6 - Create	
	The Course aims	
Course	• To give an in-depth knowledge of differential equations and their	applications
Objectives	 To give an in-depth knowledge of differential equations and their To study the special functions and their properties. 	applications.
Objectives	 To understand the existence, uniqueness, stability behavior of the 	solutions of the
	ODE.	501 011 5 01 111 5
	To analyze about the boundary value problems.	
	To learn about stability nature of nonlinear systems of equations.	
UNIT	CONTENT	HOURS
UNIT I	Second Order Linear Equations & Power Series	18 Hours
	Solutions and Special Functions: The General Solution of	
	the Homogeneous Equation—The Use of a Known Solution	
	to Find Another – The Method of Variation of Parameters –	
	Introduction: A Review of Power Series – Series Solutions	
	of First Order Equations – Second Order Linear Equations;	
	Ordinary Points.	
UNIT II	(Chapter III: Sec 15, 16, 19 and Chapter V: Sec 26 To 28) Power Series Solutions and Special Functions & Some	18 Hours
UNITI	Special Functions of Mathematical Physics	10 110 115
	Regular Singular Points – Regular Singular Points	
	(Continued) – Gauss's Hypergeometric Equation – The Point	
	at Infinity - Legendre Polynomials – Properties Of Legendre	
	Polynomials – Bessel Functions - The Gamma Function –	
	Properties of Bessel Functions.	
	(Chapter V : Sec 29 to 32 and Chapter VIII: Sec 44 to 47)	
UNIT III	Systems of First Order Equations & The Existence and	18 Hours
	Uniqueness of Solutions: Linear Systems – Homogeneous	
	Linear Systems with Constant Coefficients – The Method of	
	Solutions of Successive Approximations – Picard's Theorem.	
	(Chapter X: Sec 55,56 and Chapter XIII: Sec 68, 69)	
UNIT IV	Qualitative Properties of Solutions & Partial Differential	18 Hours
	Equations and Boundary Value Problems: Oscillations and	
	the Sturm Separation Theorem - The Sturm Comparison	
	Theorems - Eigen Values, Eigen Functions and The Vibrating	
	String.	
	(Chapter IV: Sec 24, 25 and Chapter VII: Sec 40.)	

UNIT V	Nonlinear Equations: Autonomous Systems: The Phase	18 Hours
	Plane and Its Phenomena –Types of Critical Points; Stability	
	 Critical Points and Stability for Linear Systems – Stability 	
	by Liapunov's Direct Method - Simple Critical Points of	
	Nonlinear Systems. (Chapter XI: Sec 58 to 62)	

G.F. Simmons, Differential Equations with Applications and Historical Notes, TMH, New Delhi, 1991.

Reference Books:

- 1. W.T. Reid, Ordinary Differential Equations, John Wiley & Sons, New York, 1971.
- 2. E.A. Codington and N. Levinson, Theory of Ordinary Differential Equations, McGraw Hill Publishing Company, New York, 1955.
- 3. S.G. Venkatachelapathy, Ordinary Differential Equations, Margham Publications, 2005.

Web - Resources:

- 1. https://users.math.msu.edu/users/gnagy/teaching/ode.pdf
- 2. https://www.math.ucla.edu/~yanovsky/handbooks/ODEs.pdf

Course Outcomes

On Completion of the Course, Students should be able to

CO1 : obtain the solutions of ordinary differential equations.

CO2 : evaluate the special functions.

CO3 : analyze the behavior of the solutions of the ODE CO4 : discuss the properties of boundary value problems

CO5 : solve the system of nonlinear equations.

Mapping of Course outcomes with Programme Outcomes/ Programme Specific Outcomes

CO/PO			PO					PSO				
	1	2	3	4	5	6	1	2	3	4	5	6
CO1	S	S	S	M	M	S	S	S	S	S	M	S
CO2	M	S	S	M	M	S	S	S	S	S	M	S
CO3	S	S	M	M	S	M	M	M	M	M	S	S
CO4	M	S	M	S	S	M	M	M	M	M	S	S
CO5	M	M	S	M	S	S	S	M	M	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-I / Core Choice	ADVANCED GRAPH THEORY	Course Code:
Course-I(CCC-I)		
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

Constitution of	K 1 - Acquire/ Remember K2 - Understand	
Cognitive	K3 - Apply	
Level	K4 - Evaluate	
	K5 - Analyze	
	K6 - Create	
	The Course aims	
Course	 To understand the basic concepts of graph theory. 	
Objectives	• To study the connectivity and characterization of graphs.	
	To learn matching and coverings in graphs.	
	To know about graph coloring and chromatic polynomial.	
	To gain the knowledge of planarity of graphs.	1
UNIT	CONTENT	HOURS
UNIT I	Basic Results & Directed Graphs: Introduction - Basic	18 Hours
	Concepts - Subgraphs - Degrees of Vertices - Paths and Connectedness- Automorphism of a Simple Graph -	
	Operations on Graphs - Directed Graphs: Basic Concepts -	
	Tournaments.(Chapter I: Sec 1.0 – 1.5, 1.7, 2.0 – 2.2)	
UNIT II	Connectivity & Trees: Introduction - Vertex Cuts and Edge	18 Hours
	Cuts - Connectivity and Edge-Connectivity, Trees:	
	Introduction – Definition, Characterization and Simple	
	Properties – Centers and Centroids - Counting the Number	
	of Spanning Trees - Cayley's Formula. (Chapter III: Sec	
	3.0–3.2, 4.0 -4.4)	
UNIT III	Independent Sets and Matchings & Eulerian and	18 Hours
	Hamiltonian Graphs: Introduction - Vertex Independent	
	Sets and Vertex Coverings – Edge-Independent Sets –	
	Matchings and Factors – Eulerian and Hamiltonian Graphs:	
	Introduction - Eulerian Graphs - Hamiltonian	
	Graphs.(Chapter V: Sec 5.0 – 5.3, 6.0 – 6.2)	
UNIT IV	Graph Colourings: Introduction - Vertex Colourings -	18 Hours
	Critical Graphs - Triangle - Free Graphs - Edge Colourings	
	of Graphs - Chromatic Polynomials. (Chapter VII: Sec 7.0	
	-7.4, 7.7)	
UNIT V	Planarity: Introduction - Planar and Nonplanar Graphs -	18 Hours
	Euler Formula and its Consequences - K_5 and $K_{3,3}$ are	
	Nonplanar Graphs - Dual of a Plane Graph - The Four-	
	Colour Theorem and the Heawood Five - Colour	
	Theorem. (Chapter VIII: Sec 8.0 – 8.5)	
	interest (Chapter , III See on Oil)	1

R. Balakrishnan, K. Ranganathan, A Text book of Graph Theory, Springer International Edition, New Delhi, 2008.

Reference Books:

- 1. J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Mac Milan Press Ltd.,1976.
- 2. Gary Chartrand, Linda Lesniak, Ping Zhang, Graphs and Digraph, CRC press, 2010.
- 3. F.Harary, Graph Theory, Addison Wesley, Reading, Mass., 1969.

Web - Resources:

- 1. https://www.maths.ed.ac.uk/~vlranick/papers/wilsongraph.pdf
- 2. https://www.math.ust.hk/~mabfchen/Math2343/Graph-General.pdf

Course Outcomes

On Completion of the Course, Students should be able to

CO1 : analyze the automorphism and operations on graphs.

CO2 : discuss the characterization, centers and centroids of trees.

CO3 : find the independent sets and matchings of graphs, Eulerian and Hamiltonian graphs.

CO4 : colour the graphs and find the chromatic polynomial.

CO5: the planar and non-planar graphs.

Mapping of Course outcomes with Programme Outcomes/ Programme Specific Outcomes

CO/PO			PO	PSO								
	1	2	3	4	5	6	1	2	3	4	5	6
CO1	S	M	M	M	S	S	M	M	M	S	S	M
CO2	S	M	M	M	S	S	S	S	M	S	M	M
CO3	S	M	S	M	S	S	S	S	S	S	M	S
CO4	S	M	S	M	S	S	S	S	S	S	M	S
CO5	S	M	S	S	S	S	S	S	S	S	M	S

S - Strongly Correlated M - Moderately Correlated W-Weakly Correlated N - No Correlation

Semester-I / Elective Course-I	ADVANCED NUMERICAL	Course Code:
(EC)	ANALYSIS	
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

Cognitive Level Course Objectives	 K 1 - Acquire/ Remember K2 - Understand K3 - Apply K4 - Evaluate K5 - Analyze K6 - Create The Course aims To demonstrate the concepts of Numerical methods. To study the iteration methods for solving matrices. To know about interpolations. 	
	 To learn the methods based on interpolation. To study the ordinary differential equations numerically. 	
	10 study the ordinary differential equations numerically.	
UNIT	CONTENT	HOURS
UNIT I	Transcendental and Polynomial Equations: Introduction –	18 Hours
	Bisection Method – Iteration Methods Based on First Degree	
	Equation – Iteration Methods Based on Second Degree Equation – Rate of Convergence – Polynomial Equations.	
	(Chapter II: Sec. 2.1- 2.5, 2.9)	
UNIT II	System of Linear Algebraic Equations and Eigen Value	18 Hours
	Problems: Iteration Methods - Eigen values and	
	Eigenvectors: Jacobi Method for Symmetric Matrices –	
	Givens Method for Symmetric Matrices – Power Method.	
	(Chapter III: Sec. 3.4, 3.5, 3.7, 3.8, 3.11)	
UNIT III	Interpolation and Approximation: Higher Order Interpolation - Hermit Interpolations - Bivariate Interpolation - Least Squares Approximation .(Chapter IV: Sec. 4.5, 4.7, 4.9)	18 Hours
UNIT IV	Differentiation and Integration: Methods Based on	18 Hours
	Interpolation – Extrapolation Methods – Partial	
	differentiation – Numerical Integration – Methods Based on	
	Interpolation – Methods Based on Undetermined	
	Coefficients - Composite Integration Methods. (Chapter V:	
	Sec. 5.4 - 5.9)	
UNIT V	Ordinary Differential Equations: Numerical Methods –	18 Hours
	Single Step Methods - Multistep Methods. (Chapter VI:	
	Sec. 6.3, 6.4, 6.6)	

M.K.Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International (P) Limited, New Delhi, 2003.

Reference Books:

- S.S. Sastry, Introductory Methods of Numerical Analysis, Prentice Hall of India PVT Limited, New Delhi, 1994.
- 2. Joe D. Hoffman, Numerical Methods for Engineers and Scientists, Second Edition, CRC Press, 2001

Web - Resources:

- 1. https://web.njit.edu/~jiang/math614/atkinson2.pdf
- 2. https://www.epfl.ch/labs/anchp/index-html/teaching/advancedna/

Course Outcomes

On Completion of the Course, Students should be able to

CO1 : solve transcendental and polynomial equations. CO2 : determine the solution of linear equations.

CO3 : evaluate the higher order interpolation.

CO4 : estimate the numerical differentiation and integration.
CO5 : interpret the methods of solving integration numerically

Mapping of Course outcomes with Programme Outcomes/ Programme Specific Outcomes

CO/PO		PO PSO										
	1	2	3	4	5	6	1	2	3	4	5	6
CO1	M	S	M	S	M	M	M	M	S	S	M	S
CO2	M	S	M	S	M	M	M	M	S	S	M	M
CO3	S	S	S	S	M	M	M	M	S	S	M	S
CO4	M	S	S	M	S	M	S	S	S	S	S	S
CO5	S	S	M	M	M	M	S	M	S	M	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II / Core Course- IV	COMPLEX ANALYSIS	Course Code:
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

	K 1 - Acquire/ Remember	
	K2 - Understand	
Cognitive	K3 - Apply	
Level	K4 - Evaluate	
	K5 - Analyze	
	K6 - Create	
	The Course aims	
Course	To introduce the fundamentals of metric and topological spaces.	
Objectives	To study the concept of complex integration.	
o ajecu (ca	To analyze singular points and Taylor's series	
	To gain the knowledge of Cauchy's Theorem	
	To learn about harmonic functions and power series	
UNIT	CONTENT	HOURS
UNIT I	Complex Integration: Fundamental theorems: Line	18 Hours
	Integrals – Rectifiable Arcs – Line Integrals as Functions of	
	Arcs – Cauchy's Theorem for a Rectangle – Cauchy's	
	Theorem in a Disk; Cauchy's Integral Formula: The Index of	
	a Point with Respect to a Closed Curve – The Integral	
	Formula – Higher Derivatives. (Chapter IV: Sec 1.1-1.5, 2.1-2.3)	
UNIT II	Complex Integration: Local Properties of Analytic	18 Hours
	Functions: Removable Singularities - Taylor's Theorem –	10 110415
	Integral representation of the nth term - Zeros and Poles –	
	The Local Mapping - The Maximum Principle. (Chapter	
	IV: 3.1, 3.2, 3.3,3.4)	
UNIT III	Complex Integration	18 Hours
OIVII III	The General Form of Cauchy's Theorem: Chains and	10 110013
	Cycles – Simple Connectivity – Homology – The General	
	Statement of Cauchy's Theorem – Proof of Cauchy's	
	Theorem .(Chapter IV: 4.1-4.5)	
UNIT IV		18 Hours
	Complex Integration Harmonic Functions: Definition and	
	Basic Properties – The Mean-value Property – Poisson's Formula	
	- Schwarz's Theorem - The Reflection Principle; (Chapter IV:	
	6.1-6.5)	
UNIT V	Series and Product Developments: Power series expansions-	18 Hours
	Weierstrass's Theorem – The Taylor Series – The Laurent Series	
	- Gamma function-Stirlings formula-Jensen's formula-	
	Hadamard's theorem.	
	(Chapter – 5 : Sec 2.4, 2.5,3.1,3.2)	

Lars.V. Ahlfors, Complex Analysis, Third Edition, Mc Graw Hill Book Company, New York, 1979.

Reference Books:

- 1. V.Karunakaran, Complex Analysis, 2nd Edition, Narosa, New Delhi, 2005.
- 2. R.Priestely, Introduction to Complex Analysis, Oxford India, 2008.
- 3. Serge Lang, Complex Analysis, Addison Wesley, 1977.
- 4. S. Ponnusamy, Foundations of Complex Analysis, Narosa Publishing House, New Delhi, 1997

Web - Resources:

- 1. https://www.coursera.org/learn/complex-analysis
- 2. https://www.math.ucdavis.edu/~romik/data/uploads/notes/complex-analysis.pdf

Course Outcomes

On Completion of the Course, Students should be able to

CO1 : understand the topological spaces

CO2 : acquire the knowledge of complex integration

CO3: interpret zeros and poles.

CO4 : apply Cauchy's theorem in complex valued functions

CO5 : analyse harmonic functions

Mapping of Course outcomes with Programme outcomes/Programmes Specific outcomes

CO/PO			PO				PSO					
	1	2	3	4	5	6	1	2	3	4	5	6
O 1	M	S	S	M	S	S	S	S	M	S	M	S
CO2	S	S	S	S	M	S	S	M	M	S	S	S
CO3	M	S	M	M	M	M	S	M	M	S	M	S
CO4	S	S	S	S	M	S	S	S	M	S	M	S
CO5	M	S	S	S	S	M	M	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II / Core Course-V	LINEAR ALGEBRA	Course Code:
(CC)		
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

Cognitive Level Course	K 1 - Acquire/ Remember K2 - Understand K3 - Apply K4 - Evaluate K5 - Analyze K6 - Create The Course aims To learn the various aspects of systems of linear equations.	
Objectives	 To know the representations of transformations by matrices To study the algebra of polynomials. To acquire the knowledge of determinants and its propertie To interpret the importance of diagonalization and the primary d theorem. 	es. lecomposition
UNIT	CONTENT	HOURS
UNIT I	 Linear Equations & Vector Spaces: Systems of Linear Equations - Matrices and Elementary Row Operations - Row-Reduced Echelon Matrices - Matrix Multiplication - Invertible Matrices - Bases and Dimension (Only revision of Vector spaces and Subspaces). (Chapter I: Sec. 1.2 – 1.6 & Chapter II: Sec 2.3 only) 	18 Hours
UNIT II	Linear Transformations: The Algebra of Linear Transformations - Isomorphism - Representations of Transformations by Matrices - Linear Functionals - The Double Dual - The Transpose of a Linear Transformation. (Chapter III: Sec 3.2 - 3.7)	18 Hours
UNIT III	Polynomials & Determinants: The Algebra of Polynomials - Lagrange Interpolation - Polynomial Ideals -The Prime Factorization of a Polynomial - Commutative Rings - Determinant Functions.(Chapter IV&V: 4.2-4.5 and 5.1-5.2)	18 Hours
UNIT IV	Determinants & Elementary Canonical Forms: Permutations and the Uniqueness of Determinants – Additional Properties of Determinants - Characteristic values – Annihilating polynomials. (Chapter V: Sec 5.3 – 5.4 & Chapter VI: Sec 6.2 – 6.3)	18 Hours
UNIT V	Elementary Canonical Forms: Invariant Subspaces - Simultaneous Triangulation and Simultaneous Diagonalization Direct-Sum Decompositions - Invariant Direct Sums - The Primary Decomposition Theorem. (Chapter VI: Sec 6.4 - 6.8)	18 Hours

Kenneth Hoffman and Ray Kunze, Linear Algebra, Second Edition, Prentice Hall of India Private Limited, New Delhi, 1975.

Reference Books:

- 1. S. Kumaresan, Linear Algebra: A Geometric Approach, Prentice-Hall of India Ltd, 2004.
- 2. A.R.Rao, P.Bhimashankaram, Linear Algebra, Second Edition, Tata McGraw Hill, 2000.

Web – Resources:

- 1. https://people.revoledu.com/kardi/tutorial/LinearAlgebra/Resources.html.
- 2. https://www.math.ucdavis.edu/~linear/linear-guest.pdf

Course Outcomes

On Completion of the Course, Students should be able to

CO1 : develop the knowledge about application of matrices in solving linear equations.

CO2 : represent the linear transformations by matrices.CO3 : acquire the knowledge of Algebra of polynomials.

CO4 : determine the uniqueness of determinants and annihilating polpolynomials.

CO5 : apply the concepts of the Primary Decomposition Theorem.

Mapping of COs with PSOs & POs:

CO/PO		PO							PSO				
	1	2	3	4	5	6	1	2	3	4	5	6	
CO1	S	S	S	M	S	S	S	S	M	S	S	S	
CO2	S	S	S	M	S	S	S	S	M	S	S	S	
CO3	S	S	S	M	S	S	S	S	M	S	S	S	
CO4	S	S	S	M	S	S	S	S	M	S	S	S	
CO5	S	S	S	M	S	S	S	S	M	S	S	S	

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II / Core Course-VI	PARTIAL DIFFERENTIAL	Course Code:
(CC)	EQUATIONS	
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

	K 1 - Acquire/ Remember	
	K2 - Understand	
Cognitive	K3 - Apply	
Level	K4 - Evaluate	
	K5 - Analyze	
	K6 - Create	
	The Course aims	
Course	To gain the knowledge of partial differential equations.	
Objectives	To study the characteristics of first order partial differential equat	ions.
	To learn the characteristics of second order partial differential equ	
	• To know the concepts of equations in three variables.	
	 To know the concepts of equations in three variables. To acquire the knowledge of boundary value problems. 	
	To acquire the knowledge of boundary value problems.	
UNIT	CONTENT	HOURS
UNIT I	Partial differential equations- origins of first order Partial	18 Hours
	differential equations- Cauchy's problem for first order	
	equations- Linear equations of the first order- Integral surfaces	
	Passing through a Given curve- surfaces Orthogonal to a given	
	system of surfaces -Non linear Partial differential equations of	
	the first order. (Chapter II:Sec 1-7)	
UNIT II	Cauchy's method of characteristics - compatible systems of first	18 Hours
	order equations- Charpits method- Special types of first order	
	equations- Solutions satisfying given conditions- Jacobi's	
	method.(Chapter II: Sec 8 - 13)	
UNIT III	Partial differential equations of the second order: The origin of	18 Hours
	second order equations-second order equations in Physics - Higher	
	order equations in Physics - Linear partial differential equations with	
	constant co-efficient- Equations with variable coefficients-	
	Characteristic curves of second order equations.	
	(Chapter III: Sec 1 - 6)	
UNIT IV	Characteristics of equations in three variables- The solution of	18 Hours
	Linear Hyperbolic equations-Separation of variables. The method of	
	Integral Transforms – Non Linear equations of the second	
#131##2 #7	order.(Chapter III : Sec 7 - 11)	10.17
UNIT V	Laplace Equation : Elementary solutions of Laplace's equations-	18 Hours
	Families of equipotential Surfaces - Boundary value problems-	
	Separation of variables – Problems with Axial Symmetry.	
	(Chapter IV : Sec 2 - 6)	

- 1. Ian N. Sneddon, Elements of Partial Differential Equations, Dover Publication –INC, New York, 2006.
- **2.** Robert C.McOwen, Partial Differential Equations Methods and Applications, Pearson Education (Singapore) Pvt..Ltd., Second Edition 2004.

Reference Books:

- 1. M.D.Raisinghania, Advanced Differential Equations , S.Chand and Company Ltd., New Delhi, 2001.
- 2. E.T.Copson, Partial Differential Equations, Cambridge University Press, 1973.

Web - Resources:

- 1. http://www.freebookcentre.net/Mathematics/Differential-Equations-Books 1.html
- 2. https://www.math.ucla.edu/~yanovsky/handbooks/PDEs.pdf

Course Outcomes

On Completion of the Course, Students should be able to

CO1 : classify the PDE.

CO2 : apply Charpit's and Jacobi's method for solving PDE.

CO3 : solve second order and higher order PDE.

CO4 : evaluate non Linear equations of the second order.

CO5 : compute boundary value problems

Mapping of Course outcomes with Programme Outcomes/ Programme Specific Outcomes

CO/PO			PO				PSO					
CO/PO	1	2	3	4	5	6	1	2	3	4	5	6
CO1	S	S	S	M	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	M	S	S	S	S	S	S	S	S
CO4	S	S	S	M	S	S	S	S	S	S	S	S
CO5	S	S	S	M	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II / Core Choice	ADVANVED PROBABILITY	Course Code:
Course-II (CCC-II)	THEORY	
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

Cognitive Level Course Objectives	 K 1 - Acquire/ Remember K2 - Understand K3 - Apply K4 - Evaluate K5 - Analyze K6 - Create The Course aims To understand the fields, σ -fields and random variables. To provide the knowledge of the probability space. To learn the distribution functions. To gain knowledge about expectations and moments. 	
	 To study the convergence in distributions. 	
UNIT	CONTENT	HOURS
UNIT I	Axioms of Probability – sample space and events – Axioms of probability – some propositions – equally likely outcomes – probability as a continuous set function – probability as a measure of belief. (Chapter II)	18 Hours
UNIT II	Conditional Probability and Independence – Conditional probabilities – Baye's formula – Independent events – P(.IF) is a probability. (Chapter III)	18 Hours
UNIT III	Random variables — Distribution functions — Discrete random variables — Expected value — Expectation of a function of random variable — Variance — Bernoulli and Binomial random variables.(Chapter IV: Sections 4.1 to 4.6)	18 Hours
UNIT IV	Continuous random variables – Expectation and variance of continuous random variables – The uniform and normal random variables – Exponential random variables – Other Continuous Distribution. (Chapter V: Sections 5.2 to 5.6)	18 Hours
UNIT V	Jointly Distributed Random Variables – Joint distribution functions – Independent random variables – Their sums – Conditional distributions. (Chapter VI: Sections 6.1 to 6.5)	18 Hours

Sheldon Ross, A first course in Probability, Maxwell MacMillan international edition, Fifth edition , Newyork ,1989

Reference Books:

- 1. Chandra T.K and Chatterjee D. (2003), A first course in probability, 2nd Edition, Narosa Publishing House, New Delhi.
- 2. Kailai Chung and Farid Aitsahlia, Elementary Probability, Springer Verlag 2003, New York.
- 3. Capinski and Thomasz Zastawniak(2003), Probability through problems, Springer Verlag, New York.
- 4. Sharma .T.K(2005), A text book of probability and theoretical distribution, Discovery publishing house, New Delhi.

Web – Resources:

- 1. https://ieeexplore.ieee.org/document/6813036?arnumber=6813036
- 2. https://www.degruyter.cpcom/document/doi/10.1515/9783110466195/html?lang=en

Course Outcomes

On Completion of the Course, Students should be able to

CO1 : interpret the field and σ – fields CO2 : analyze the probability spaces.

CO3 : apply the concepts of random variables and distributions.
 CO4 : describe the ideas of expectation and characteristic functions

CO5 : demonstrate the convergence of random variables

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes

CO/PO		PO							PSO				
	1	2	3	4	5	6	1	2	3	4	5	6	
CO1	S	S	S	S	S	S	S	S	S	S	S	S	
CO2	S	S	S	S	S	S	S	S	S	S	S	S	
CO3	S	S	S	S	S	S	S	S	S	S	S	S	
CO4	S	S	S	S	S	S	S	S	S	S	S	S	
CO5	S	S	S	S	S	S	S	S	S	S	S	S	

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II / Elective Course-II	FUZZY SETS AND ITS	Course Code:
(EC - II)	APPLICATIONS	
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

	K 1 - Acquire/ Remember	
	K2 - Understand	
Cognitive	K3 - Apply	
Level	K4 - Evaluate	
	K5 - Analyze	
	K6 - Create	
	The Course aims	
Course	The Course units	
Objectives	To introduce the fundamental of fuzzy set theory and its connection	ion with fuzzy logic.
Objectives	To emphasis the comprehensive coverage of operations on fuzzy	•
	To analyze the types of fuzzy arithmetic operations.	
	To introduce the various relations of fuzzy relations.	
	• To study the applications of fuzzy in decision making problems.	
UNIT	CONTENT	HOURS
UNIT I	From Classical (Crisp) Sets To Fuzzy Sets: A Grand	18 Hours
	Paradigm Shift And Fuzzy Sets Versus Crisp Sets: Fuzzy	
	sets: Basic types – Fuzzy sets: Basic Concepts –Additional	
	Properties of α – cuts -Extension Principle for fuzzy sets.	
	(Chapter I: Sec 1.3, 1.4, Chapter II: Sec 2.1, 2.3.)	40.77
UNIT II	Operations On Fuzzy Sets: Types of operations—Fuzzy	18 Hours
	complements- Fuzzy Intersection: t-Norms – Fuzzy Unions:	
	t-Conorms – Combinations of Operations.	
UNIT III	(Chapter III: Sec 3.1 - 3.5)	18 Hours
UNITIII	Fuzzy Arithmetic: Fuzzy numbers - Linguistic variables -	18 Hours
	Arithmetic operations on intervals –Arithmetic operations	
TINITED TY	on Fuzzy numbers. (Chapter IV: Sec 4.1 – 4.4)	10.11
UNIT IV	Fuzzy Relations: Binary Fuzzy Relations – Binary Relations	18 Hours
	on a Single Set – Fuzzy Equivalence Relations – Fuzzy	
	Compatibility Relations – Fuzzy Ordering Relations – Fuzzy	
	Morphisms. (Chapter V : Sec 5.3 - 5.8)	
UNIT V	Fuzzy Decision Making: Individual Decision Making -	18 Hours
	Multiperson Decision Making – Fuzzy Ranking Methods –	
	Fuzzy Linear Programming.(Chapter XV : 15.2,	
	15.3,15.6,15.7)	

George J. Klir and Bo Yuan, Fuzzy sets and Fuzzy Logic Theory and Applications, Prentice Hall of India, 2008.

Reference Books:

- 1. H.J. Zimmermann, Fuzzy Set Theory and its Applications, Allied Publishers Limited, 1991.
- 2. M. Ganesh, Introduction to Fuzzy sets and Fuzzy logic, Prentice Hall of India, New Delhi, 2006

Web - Resources:

- 1. https://link.springer.com/content/pdf/bfm%3A978-94-015-7949-0%2F1.pdf
- 2. https://www.eng.buffalo.edu/~nagi/papers/fuzzy.pdf

Course Outcomes

On Completion of the Course, Students should be able to

CO1 : discuss the properties and extension principles of fuzzy sets.

CO2 : apply the mathematical operations on fuzzy sets.

CO3: construct the arithmetic operations on fuzzy numbers.

CO4: interpret the relations on fuzzy sets.

CO5 : analyze fuzzy concepts in decision making problems

Mapping of Course outcomes with Programme Outcomes/ Programme Specific Outcomes

CO/PO	PO]	PSO		
	1	2	3	4	5	6	1	2	3	4	5	6
CO1	S	S	S	M	S	S	S	S	S	S	S	W
CO2	S	S	S	M	S	S	S	S	S	S	S	W
CO3	S	S	S	M	S	S	S	S	S	S	S	W
CO4	S	S	S	M	S	S	S	S	S	S	S	W
CO5	S	S	S	M	S	S	S	S	S	S	S	W

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II / S Enhancement		SEC II - Python Programming in Mathematics	Course Cod	de: MMSEC 2	
Instruction Ho	ours: 2	Credits: 2	Exam Hour	irs: 3	
Internal Mark	s: 40	External Marks: 60	Total Mark	s: 100	
Cognitive Level	K 1 - Recalling K2 - Understa K3 - Applying K4 - Analyzing K5 – Evaluatin K6 - Creating	nding g ng			
Course Objectives	To write	about Python commands programs solving system of linear equat tandard curves	tions		
UNIT	C	CONTENT		Hours	
Programs	operators, numerical input/output 2. Some simple and logical of i) Compare state ii) Sum of notion iii) Find iv) To check state Find the factoria 3. Simple program Note: Give the illustrate with simple program otherwise and form the second of the python community of the python community rule of the python community rule of the python program the python program of the python	e programs to understand the relational, operators. It two numbers (less than, greater than) to ement entural numbers using while loop ling the factors of a number using for lot the given number is prime or not (use ement). I of a number (use if ifelse). I of a number (use if ifelse). I ams to illustrate logical operators (and the structure of a whiledo loop to the set than example. I mands to reduce given matrix to echelo with examples. I ams/command to establish the consister of solving system of linear equations. I mand to find the nth derivatives without enture of the set than the se	conditional using if cop. if else , or, not) students and n form and ncy or t ions ncobean. nits	30 Hours	

Semester- III / Core Course- VII	MEASURE AND	Course Code:
(CC)	INTEGRATION	
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

Cognitive Level	K 1 - Acquire/ Remember K2 - Understand K3 - Apply K4 - Evaluate K5 - Analyze K6 - Create	
Course Objectives	 The Course aims To understand the concepts of integration using measures. To introduce the concept of measure in real line. To gain the knowledge of abstract measure spaces. To study different types of decompositions. To learn the facts of product measure spaces. 	
UNIT	CONTENT	HOURS
UNIT I	Measure on The Real Line Lebesgue Outer Measure - Measurable Sets - Regularity - Measurable Functions — Borel and Lebesgue Measurability .(Chapter II: Sec 2.1 - 2.5)	18 Hours
UNIT II	Integration of Functions of a Real Variable Integration of Non-Negative Functions - The General Integral - Integration of Series - Riemann and Lebesgue Integrals. (Chapter III: Sec 3.1 - 3.4)	18 Hours
UNIT III	Abstract Measure Spaces Measures and Outer Measures – Extension of a Measure – Uniqueness of The Extension - Completion of a Measure - Measure Spaces - Integration with Respect to a Measure. (Chapter V: Sec 5.1 - 5.6)	18 Hours
UNIT IV	Convergence & Signed Measures and Their Derivatives Convergence in Measure- Almost uniform convergence- Signed Measures and The Hahn Decomposition —The Jordan Decomposition. (Chapter VII: Sec 7.1 and 7.2, Chapter VIII: Sec 8.1 and 8.2)	18 Hours
UNIT V	Measure and Integration In A Product Space Measurability in a Product space – The product Measure and Fubini's Theorem. (Chapter X: Sec 10.1 &10.2)	18 Hours

G. De Barra, Measure Theory and Integration, Willey Eastern Limited, 1991.

Reference Books:

- 1. P.K. Jain, V.P. Gupta, Lebesgue Measure and Integration, New Age International Pvt Limited Publishers, New Delhi, 1986, Reprint 2000.
- 2. Richard L. Wheeden and Antoni Zygmund, Measure and Integral: An Introduction to Real Analysis, Marcel Dekker Inc. 1977.
- 3. Inder, K. Rana, An Introduction to Measure and Integration, Narosa Publishing House, New Delhi, 1997.

Web - Resources:

- 1. https://www.researchgate.net/publication/321069885 Measure_Theory_and_Integration_By_and For the learners
- 2. https://www.iisc.ac.in/wp-content/uploads/2017/12/MA222.pdf

Course Outcomes On Completion of the Course, Students should be able to CO1 : find the Lebesgue measure of measurable sets. CO2 : discuss the integration of non-negative functions. CO3 : analyze abstract measure spaces. CO4 : demonstrate Hahn decomposition theorem and signed measure CO5 : compute product measure.

Mapping of Course outcomes with Programme Outcomes/ Programme Specific Outcomes

CO/PO	PO]	PSO		
	1	2	3	4	5	6	1	2	3	4	5	6
CO1	S	S	M	M	S	S	M	S	M	M	S	S
CO2	S	S	S	M	S	S	S	S	M	S	S	S
CO3	S	S	M	M	S	S	M	S	M	M	S	S
CO4	S	S	M	M	S	S	M	S	M	M	S	S
CO5	S	S	M	M	S	S	M	S	M	M	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-III / Core Course VIII	TOPOLOGY	Course Code:
-(CC)		
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

	K 1 - Acquire/ Remember	
Cognitive	K2 - Understand	
Level	K3 - Apply	
Level	K4 - Evaluate	
	K5 - Analyze	
	K6 - Create	
	The Course aims	
Course	• To study the concepts of deformation of objects with its pro	•
Objectives	To learn connectedness and compactness of topological spa	
	• To know the essentials of countability and separation axion	
	• To understand the Tychonoff theorem and Stone – Cech Co	empactification.
	• To acquire knowledge about complete metric spaces.	
UNIT	CONTENT	HOURS
UNIT I	Topological Spaces and Continuous Functions	18 Hours
	Topological spaces – basis for a topology – the order topology –	
	The Product topology of XxY – The subspace topology –Closed	
	sets & Limit points – Continuous Functions.	
	(Chapter II: Sec 12 - 18)	
UNIT II	Topological Spaces and Continuous Functions &	18 Hours
	Connectedness and Compactness	
	The product topology – The Metric topology - The metric	
	topology Continued - Connected spaces - Connected subspaces	
	of the real line – Compact spaces.	
	(Chapter II: Sec 19 – 21 Chapter III: Sec 23,24 and 26)	
UNIT III	Countability and Separation Axioms	18 Hours
	The countability axioms – The separation axioms – Normal	
	Spaces - the Urysohn's lemma – Urysohn's Metrization Theorem	
	- The Tietze Extension Theorem.	
	(Chapter IV: Sec 30 - 35) (Chapter IV: Sec 30 - 35)	
UNIT IV	The Tychonoff Theorem	18 Hours
	The Tychonoff theorem – The Stone – Cech –	
	Compactification.(Chapter V: Sec 37,38)	
UNIT V	Complete Metric Spaces and Function Spaces	18 Hours
	Complete Metric spaces – Compactness in Metric spaces	
	(Chapter VII: Sec 43 & 45)	
	(Campital + 221 000 10 to 10)	

James R. Munkress, Topology - A First course, Second Edition, Prentice-Hall of India (P) Ltd. New Delhi, 2006.

Reference Books:

- 1. James Dugundji, Topology, Prentice Hall of India Pvt. Ltd., 1975.
- 2. G.F. Smmons, Introduction to Topology and Modern Analysis, M.C.Graw Hill Company, 1963.

Web - Resources:

https://nptel.ac.in/content/storage2/courses/111106054/Topology%20complete%20course.pdf

Course Outcomes

On Completion of the Course, Students should be able to

CO1: analyze the fundamental concepts of general topology.

CO2 : determine the types of topological spaces and their properties.
CO3 : discuss Uryzohn's lemma and the Tietze Extension Theorem.

CO4: demonstrate Tychonoff theorem

CO5 : compute the complete and compactness in metric spaces

Mapping of Course outcomes with Programme Outcomes/ Programme Specific Outcomes

CO/PO	PO								I	PSO		
	1	2	3	4	5	6	1	2	3	4	5	6
CO1	S	M	S	M	S	S	S	S	M	S	S	S
CO2	S	M	S	M	S	S	S	S	M	S	S	S
CO3	S	M	S	M	S	S	S	S	M	S	S	S
CO4	S	M	S	M	S	S	S	S	M	S	S	S
CO5	S	M	S	M	S	S	S	S	M	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-III / Core Course- IX	INTEGRAL EQUATIONS	Course Code:
(CC)	AND TRANSFORMS	
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

Cognitive Level Course Objectives	K 1 - Acquire/ Remember K2 - Understand K3 - Apply K4 - Evaluate K5 - Analyze K6 - Create The Course aims To introduce the concept of integral equations and their a To learn the different types of transforms and their proper	rties.
	 To develop Fourier Transformations, method of success approximations, To understand the Finite Fourier Transform. To study the boundary value problems under Fourier transform. 	
UNIT	CONTENT	HOURS
UNIT I	Integral Equations With Separable Kernels: Reduction to a system of Algebraic equations — Definition Regularity conditions — Special kind of kernels — Eigen values and Eigen functions — convolution integral — the inner of scalar product of two functions — Notation — Equations — Fredholm alternative — examples. (Chapter II: Sec 2.1 — 2.4)	18 Hours
UNIT II	Method of Successive Approximations: An Approximate Method – Method of Successive Approximations Iterative Scheme - Examples – Volterra Integral Equation – Examples – Some Results About The Resolvent Kernel. (Chapter II & Chapter III: Sec 2.5 & 3.1–3.5)	18 Hours
UNIT III	Fourier Transform: Fourier Transform – Integral Formula Complex Transform – Cosine – Sine Transform – Property – Linearity, Change of Scale, Shifting – Modulation Theorem – Convolution Theorem – The Convolution or Falting Theorem for Fourier Transform. (Chapter VI: Sec 6.1 to 6.18)	18 Hours
UNIT IV	Finite Fourier Transform: Finite Fourier transform – Inversion Formula for Sine Transform – Finite Fourier Cosine Transforms – Inversion Formula for Cosine Transforms – Operational property of Finite Fourier Sine Transform – Operational property of Finite Fourier Cosine Transform – Combined properties of Finite Sine and Cosine Transforms – Convolution. (Chapter VII: Sec 7.1 to 7.4, 7.6 to 7.9)	18 Hours

UNIT V	Application of Fourier Transform in Initial and Boundary	18 Hours
	Value Problems: Applications of Infinite Fourier Transform	
	- Choice of Infinite Sine or Cosine Transforms - Finite	
	Fourier Transform of Partial Derivatives – Choice of Finite	
	Sine and Cosine Transforms. (Chapter VIII: Sec 8.1, 8.2, 8.4	
	& 8.5)	

- 1. For Units I & II Ram P. Kanwal, Linear Integral Equations Theory and Practice Academic press, 1971.
- 2. For Units III, IV & V A.R. Vasista and R.K. Gupta Krishna, Integral transforms, Pragasam Publications.
- 3. T.Veerarajan, Transforms and Partial Differential Equations, Tata MCGraw Hill Education Private Limited, New Delhi, 2011. (Self-learning)

Reference Books:

Andrei D.Polyanin, Alexander V. Manzhirov ,Hand book of Integral Equations, Second Edition, Chapman/CRC Press.,2008.

Web - Resources:

- **1.** https://www.usna.edu/Users/physics/tank/Other/MathMethods/MethodsAdditions/IntegralTransforms.pdf
- 2. http://www.hep.caltech.edu/~fcp/math/integralEquations/integralEquations.pdf

Course Outcomes

On Completion of the Course, Students should be able to

CO1 : solve the linear integral equations.

CO2 : find the solutions of Volterra and Fredholm integral equations.

CO3 : demonstrate the variational problems on moving boundaries and fixed boundaries.

CO4 : evaluate the Fourier transform, finite sine and cosine transforms.

CO5 : apply Fourier transform in initial and boundary value problems.

Mapping of Course outcomes with Programme Outcomes/ Programme Specific Outcomes

CO/PO	PO								J	PSO		
	1	2	3	4	5	6	1	2	3	4	5	6
CO1	S	S	S	M	S	S	S	S	S	S	S	S
CO2	S	S	S	M	S	S	S	S	S	S	S	S
CO3	S	S	S	M	S	S	S	S	S	S	S	S
CO4	S	S	S	M	S	S	S	S	S	S	S	S
CO5	S	S	S	M	S	S	S	S	S	S	S	S

S - Strongly Correlated, M - Moderately Correlated,

W-Weakly Correlated, N – No Correlation

Semester-III / Core Choice	CLASSICAL DYNAMICS	Course Code:
Course-III (CCC-III)		
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

	77.4 / D	
	K 1 - Acquire/ Remember	
Cognitive	K2 - Understand	
Level	K3 - Apply	
	K4 - Evaluate	
	K5 - Analyze	
	K6 - Create	
C	The Course aims	
Course	To give a detailed knowledge of the mechanical system of particle	
Objectives	• To understand Lagrange's Equations of motion for the set of general states of the set of the se	eralized coordinates.
	To study special applications of Lagrange's Equations. The study special applications of Lagrange's Equations.	
	To learn the applications of Hamilton's equations. The state of	
	• To inculcate the applications of Hamilton – Jacobi Equation.	
UNIT	CONTENT	HOURS
UNIT I	Introductory Concepts: The Mechanical System – Generalized	18 Hours
	Co-ordinates – Constraints – Virtual Work – Energy & Momentum.	
	(Chapter I: Sec 1.1 to 1.5)	
UNIT II	Lagrange's Equations: Derivation of Lagrange's Equations –	18 Hours
	Examples – Integrals of the Motion – Small Oscillations.	
	(Chapter II : Sec 2.1 to 2.4)	
UNIT III	Special Applications of Lagrange's Equations: Rayleigh's	18 Hours
	Dissipation function – Impulsive Motion – Gyroscopic Systems –	
	Velocity – Dependent Potentials.	
	(Chapter III: Sec 3.1 to 3.4)	
UNIT IV	Hamilton's Equations: Hamilton's Principle - Hamilton's	18 Hours
	Equations – Other Variational Principles – Phase Space. (Chapter	
	IV: Sec 4.1 to 4.4)	
UNIT V	Hamilton - Jacobi Theory: Hamilton's Principle function - The	18 Hours
	Hamilton - Jacobi Equation – Separability.	
	(Chapter V: Sec 5.1 to 5.3)	

T.Greenwood, Classical Dynamics, PHI Pvt Ltd., New Delhi, 1985.

Reference Books:

- 1. C.R.Mondall, Classical Mechanics, Prentice Hall of India, 2001.
- 2. Herbert Goldstein, Classical Mechanics, Third Edition, Addison Wesley Publications, Massachusetts, 2002.

Web - Resources:

- 1. http://www.damtp.cam.ac.uk/user/tong/dynamics/clas.pdf
- 2. http://www.freebookcentre.net/Physics/Classical-Mechanics-Books.html

Course Outcomes

On Completion of the Course, Students should be able to

CO1 : analyze the mechanical system of particles.

CO2 : solve the Lagrange's equations of motion for the set of generalized coordinates.

CO3 : apply Lagrange's equations on various functions.CO4 : interpret Hamilton's equations and its principles.

CO5 : retrieve Hamilton – Jacobi Equation.

Mapping of Course outcomes with Programme Outcomes/ Programme Specific Outcomes

CO/PO	PO								I	PSO		
	1	2	3	4	5	6	1	2	3	4	5	6
CO1	S	S	S	M	S	S	S	M	S	S	S	S
CO2	S	S	S	M	S	S	S	M	S	S	S	S
CO3	S	S	S	M	S	S	S	M	S	S	S	S
CO4	S	S	S	M	S	S	S	M	S	S	S	S
CO5	S	S	S	M	S	S	S	M	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-III/ Entrepreurship /	ADVANCED OPERATIONS	Course Code:
Industry BasedCourse)	RESEARCH	
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

	K 1 - Acquire/ Remember	
Cognitive	K2 - Understand	
Level	K3 - Apply	
Level	K4 - Evaluate	
	K5 - Analyze	
	K6 - Create	
	The Course aims	
Course	To introduce the applications and algorithms in the field of opera	
Objectives	To understand the OR techniques in business and management pr	
	• To know the optimization techniques like integer programming, or programming, decision theory and game theory.	iynamic
	 To learn the concept of inventory models. 	
	To study the non-linear programming algorithms.	
UNIT	CONTENT	HOURS
UNIT I	Integer Linear Programming	18 Hours
	Introduction - Illustrative Applications - Integer Programming	
	Solution Algorithms – Branch and Bound Method – Zero – One	
	Implicit enumeration Algorithm - Cutting Plane Algorithm. (
	Chapter IX : Sec 9.1 - 9.3)	
UNIT II	Deterministic Dynamic Programming	18 Hours
	Introduction - Recursive Nature of Computations in DP -	
	Forward and Backward Recursion – Selected DP Applications –	
	Cargo Loading Model – Work Force Size Model – Equipment	
	Replacement Model - Investment Model - Inventory Models	
	(Chapter X : Sec 10.1 - 10.4)	
UNIT III	Decision Analysis and Games	18 Hours
	Decision Environments – Decision Making under Certainty –	
	Analytical Hierarchy Approach - Decision Making under Risk –	
	Expected Value Criterion – Variation of the Expected Value	
	Criterion – Decision under uncertainty – Game Theory – Optimal	
	Soultion of two Person Zero Sum Games – Solution of Mixed	
	Strategy Games. (Chapter XIV : Sec 14.1 - 14.5)	
UNIT IV	Deterministic Inventory Models	18 Hours
	Introduction - General Inventory Model – Static EOQ	
	Models – Classic EOQ Models – EOQ with Price Breaks – Multi	
	Item EOQ with Storage Limitation.(Chapter XI : Sec 11.1 -11.3)	
UNIT V	Nonlinear Programming Algorithms	18 Hours

Unconstrained Nonlinear Algorithms – D	Direct Search Method –
Gradient Method – Constrained Algo	orithms – Separable
Programming – Quadratic Programm	ming – Geometric
Programming. (Chapter XXI: Sec 21.1 – 2	21.2.3)

Hamdy A. Taha, Operations Research, Prentice hall of India, Sixth Edition.

Reference Books:

- 1. O.L. Mangasarian, Non Linear Programming, McGraw Hill, New York.
- 2. S. Mokther Bazaraa and C.M. Shetty, Non Linear Programming, Theory and Algorithms, Willy, New York.
- 3. Prem Kumar Gupta and D.S. Hira, Operations Research-An Introduction, S.Chand and Company.

Web – Resources:

http://www.ru.ac.bd/stat/wp-content/uploads/sites/25/2019/03/405_01_Srinivasan_Operations-Research -Principles-and-Applications-Prentice-Hall-of-India-2010.pdf

Course Outcomes

On Completion of the Course, Students should be able to

CO1 : write the algorithms in integer programming problem.

CO2 : apply the OR techniques in various models.

CO3 : analyse the problems on decision theory and game theory

CO4 : optimize solutions of inventory models.

CO5 : intrepret the concepts of non-linear programming problems.

Mapping of Course outcomes with Programme Outcomes/ Programme Specific Outcomes

CO/PO		PO]	PSO		
	1	2	3	4	5	6	1	2	3	4	5	6
CO1	S	S	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

N – No Correlation

Semester-III / S	SEC II	SEC II –Numerical Analysis Using SCI Lab	Using SCI Lab						
Instruction Ho	ours: 2	Credits: 2	Credits: 2 Exam Hours:						
Internal Mark	s: 40	External Marks: 60	Total Ma	rks: 100					
Cognitive Level	K 1 - Recal K2 - Under K3 - Apply K4 - Analy K5 – Evalua K6 - Creati	standing ing zing ating							
Course Objectives	To wrTo sol initial	rn about SCI commands ite programs for finding roots of eq ve system of linear algebraic equation value problems							
UNIT		ONTENT		HOURS					
Programs	Bisect 2. Solvin Regula 3. Solvin Newto 4. Solvin Secan 5. Solvin Gauss 6. Solvin Gauss 7. Solvin Gauss 8. Solvin Jacob 9. Solvin 10. Solvin formu 11. Solvin formu 12. Evalu Trape	g Interpolation using Newton's forwards. At $\int_a^b f(x) dx$	nations using d. d. difference nations using d.	30 Hours					
	13. Eval rule. 14. Solv proble 15. Solv	uating the integral $\int_{a}^{b} f(x)dx$ using the integral $\int_{a}^{b} f(x)dx$ using ting first order initial value ing first order initial value musing Runge Kutta Method.	g Simpson's						

Semester III / VAC II* (Self Learning)	Mathematics for CSIR NET / SET / TRB	Course Code:
Instruction Hours: -	Credits: 2	Exam: 3 Hrs

Analysis:

Elementary set theory, finite, countable and uncountable sets, Real number system as a complete ordered field, Archimedean property, supremum, infimum., Sequences and series, convergence, limsup, liminf. Bolzano Weierstrass theorem, Heine Borel theorem., Continuity, uniform continuity, differentiability, mean value theorem. Sequences and series of functions, uniform convergence., Riemann sums and Riemann integral, Improper Integrals, Monotonic functions, types of discontinuity, functions of bounded variation, Lebesgue measure, Lebesgue integral., Functions of several variables, directional derivative, partial derivative, derivative as a linear transformation, inverse and implicit function theorems, Metric spaces, compactness, connectedness. Normed linear Spaces. Spaces of continuous functions as examples.

Linear Algebra:

Vector spaces, subspaces, linear dependence, basis, dimension, algebra of linear transformations. Algebra of matrices, rank and determinant of matrices, linear equations, Eigen values and eigenvectors, Cayley-Hamilton theorem, Matrix representation of linear transformations, Change of basis, canonical forms, diagonal forms, triangular forms, Jordan forms, Inner product spaces, orthonormal basis, Quadratic forms, reduction and classification of quadratic forms.

Complex Analysis:

Algebra of complex numbers, the complex plane, polynomials, power series, transcendental functions such as exponential, trigonometric and hyperbolic functions, Analytic functions, Cauchy-Riemann equations, Contour integral, Cauchy's theorem, Cauchy's integral Formula, Liouville's Theorem, modulus principle, Schwarz lemma, Open mapping theorem. Taylor series, Laurent series, calculus of residues.

Conformal mappings, Mobius transformations.

Algebra:

Permutations, combinations, pigeon-hole principle, inclusion-exclusion principle, derangements, Fundamental theorem of arithmetic, divisibility in Z, congruences, Chinese Remainder Theorem, Groups, subgroups, normal subgroups, quotient groups, homomorphisms, cyclic groups, permutation, Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domain, principal ideal domain, Euclidean domain, Polynomial rings and irreducibility criteria, Fields, finite fields, field extensions, Galois Theory.

Topology:

Basis, dense sets, subspace and product topology, separation axioms, connectedness and compactness.

Ordinary Differential Equations (ODEs):

Existence and uniqueness of solutions of initial value problems for first order ordinary differential equations, singular solutions of first order ODEs, system of first order ODEs, General theory of homogeneous and non-homogeneous linear ODEs, variation of parameters.

Partial Differential Equations (PDEs):

Lagrange and Charpit methods for solving first order PDEs, Cauchy problem for first order PDEs, Classification of second order PDEs, General solution of higher order PDEs with constant coefficients, Method of separation of variables for Laplace, Heat and Wave equations.

Numerical Analysis:

Numerical solutions of algebraic equations, Method of iteration and Newton-Raphson method, Rate of convergence, Solution of systems of linear algebraic equations using Gauss elimination and Gauss-Seidel methods, Finite differences, Lagrange, Hermite and spline interpolation, Numerical differentiation and integration, Numerical solutions of ODEs using Picard, Euler, modified Euler and, Runge-Kutta methods.

Calculus of Variations:

Variation of a functional, Euler-Lagrange equation, Necessary and sufficient conditions for extrema. Variational methods for boundary value problems in ordinary and partial differential equations.

Linear Integral Equations:

Linear integral equation of the first and second kind of Fredholm and Volterra type, Solutions with separable kernels. Characteristic numbers and eigenfunctions, resolvent kernel.

Classical Mechanics:

Generalized coordinates, Lagrange's Equations, Hamilton's Canonical equations, Hamilton's Principle, Euler's Dynamical Equation for the motion of a rigid body about an axis, theory of small oscillations.

Semester-IV / Core Course X -(CC)	FUNCTIONAL	Course Code:
	ANALYSIS	
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

Cognitive Level Course Objectives	 K 1 - Acquire/ Remember K2 - Understand K3 - Apply K4 - Evaluate K5 - Analyze K6 - Create The Course aims To learn the concepts of Banach Spaces, Bounded linear operators, To study the structure theorems of Functional Analysis viz., Hahn 	
	 Open mapping theorem and Uniform boundedness principle. To acquire the knowledge about Hilbert spaces and operator theory To know the proof of well-known spectral mapping theorem. To gain knowledge of Gelfand- Neumark theorem. 	on Hilbert spaces.
UNIT	CONTENT	HOURS
UNIT I	Banach Spaces: The definition and some examples – Continuous linear transformations – The Hahn-Banach theorem – The natural imbedding of N in N** - The open mapping theorem – The conjugate of an operator. (Chapter IX)	18 Hours
UNIT II	Hilbert Spaces: The definition and some simple properties – Orthogonal complements – Orthonormal sets – The conjugate space H*– The adjoint of an operator – Self-adjoint operators – Normal & unitary operators - Projections (Chapter X)	18 Hours
UNIT III	Finite – Dimensional Spectral Theory: Matrices – Determinants and the spectrum of an operator – The spectral theorem – A survey of the situation. (Chapter XI)	18 Hours
UNIT IV	General Preliminaries on Banach Algebras: The definition & some examples – Regular and singular elements – Topological divisors of zero – The spectrum – The Formula for the spectral radius – The radical & semi-simplicity. (Chapter XII)	18 Hours
UNIT V	The Structure of Commutative Banach Algebras: The Gelfand mapping – Applications of the formula $r(x) = \lim_{n \to \infty} x^n ^{1/n}$. Involutions in Banach Algebras – The Gelfand- Neumark theorem. (Chapter XIII)	18 Hours

G.F.Simmons, Introduction to Topology & Modern Analysis, Mc Graw Hill, ISE, 1963.

Reference Books:

- 1. E. Kreyszig, Introductory Functional Analysis with applications, John Wiley, 1978.
- 2. B.V.Limaye, Functional Analysis, Wiley Easter Limited, Bombay, 2nd edition, 1985

Web - Resources:

- 1. http://www.math.nsc.ru/LBRT/g2/english/ssk/fa e.pdf
- 2. https://docs.ufpr.br/~eidam/2019/2/CM075/Kreyszig.pdf

Course Outcomes

On Completion of the Course, Students should be able to

CO1: disuss the concept of normed linear spaces, dual spaces, weak convergence.

CO2 : apply the idea of the Hahn Banach theorem and open mapping theorem.

CO3 : analyze linear operators on Hilbert space.

CO4 : evaluate orthonormal basis.

CO5 : demonstrate the commutative Banach algebras.

Mapping of Course Outcomess with Programme Outcomes / Programme Specific Outcomes

CO/PO		PO							I	PSO		
	1	2	3	4	5	6	1	2	3	4	5	6
CO1	S	M	S	M	S	S	S	S	M	S	S	S
CO2	S	M	S	M	S	S	S	S	M	S	S	S
CO3	S	M	S	M	S	S	S	S	M	S	S	S
CO4	S	M	S	M	S	S	S	S	S	S	S	S
CO5	S	M	S	M	S	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

N – No Correlation

Semester-IV / Core Course-XIV	FLUID DYNAMICS	Course Code:
(CC)		
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

	K 1 - Acquire/ Remember K2 - Understand	
Cognitive		
Level	K3 - Apply	
	K4 - Evaluate	
	K5 - Analyze	
	K6 - Create	
	The Course aims	
Course	To know the behavior of fluids in motion.	
Objectives	To study the analysis is of the flow of liquids.	
	To introduce the concepts of two dimensional flow.	
	To learn the stress components on viscous flow.	
	To understand the energy dissipation due to viscosity.	
UNIT	CONTENT	HOURS
UNIT I	Kinematics of Fluids in Motion: Real fluids and Ideal Fluids	18 Hours
	 Velocity of a Fluid at a point – Streamlines and Path lines; 	
	Steady and Unsteady Flows – Velocity potential – Vorticity	
	vector – Local and Particle Rates of Change – Equation of	
	continuity - Worked examples - Acceleration of a Fluid	
	(Chapter 2: Sec 2.1 – 2.9)	
UNIT II	Equations of Motion of a Fluid: Pressure at a point in a Fluid at Rest-Pressure at a point in Moving Fluid – Conditions at a Boundary of Two Inviscid Immiscible Fluids – Euler's equation of motion – Bernoulli's equation – worked examples (3.1 – 3.6) - Some Three Dimensional Flows: Introduction – Sources, Sinks and Doublets – Images in a Rigid infinite Plane – Axi-Symmetric Flows; Stokes stream function. (Sec: 4.1,4.2 & 4.5)	18 Hours
UNIT III	Some Two Dimensional Flows: Meaning of a Two-Dimensional Flow – Use of cylindrical polar co-ordinates – The stream function – The Complex Potential for Two Dimensional, Irrotational, Incompressible Flow – complex velocity potentials for Standard Two Dimensional Flows – Some worked examples – The Milne- Thomson circle theorem and applications – The theorem of Blasius.(Sec: 5.1 – 5.6, 5.8 & 5.9)	18 Hours

UNIT IV	Viscous flow: Stress components in a real fluid - relations between cartesian components of stress - Translational Motion of Fluid element – The Rate of Strain Quadric and Principle Stresses – Some further properties of the rate of strain quardric - Stress analysis in fluid motion – Relations between stress and rate of strain - The coefficient of viscosity and laminar flow.(Sec: 8.1-8.8)	18 Hours
UNIT V	Viscous flow: The Navier- Stokes equations of motion of a viscous fluid - Some solvable problems in viscous flow - Steady viscous flow in tubes of uniform cross section - Diffusion of vorticity - Energy Dissipation due to viscosity. (Sec: 8.9 - 8.13)	18 Hours

F. Chorlton, Text Book of Fluid Dynamics, CBS Publisher & Distributors, Delhi-110 002.

Reference Books:

- 1. J.F. Wendt J.D. Anderson, G. Degrez and E. Dick, Computational Fluid Dynamics: An Introduction, Springer Verlag, 1996.
- 2. J. D. Anderson, Computational Fluid Dynamics The Basics with Applicatios, McGraw Hill, 1995.
- 3. G. K. Batchelor, An Introduction to Fluid Mechanics, Foundation Books, New Delhi, 1984.
- 4. A. J. Chorin and A. Marsden, A Mathematical Introduction to Fluid Dynamics, Springer-Verlag, New York, 1993.
- 5. S. W. Yuan, Foundations of Fluid Mechanics, Prentice Hall of India Pvt Limited, New Delhi, 1976.
- 6. R. K. Rathy, An Introduction to Fluid Dynamics, Oxford and IBH Publishing Company, New Delhi, 1976.

Web - Resources:

- 1. https://www.degruyter.com/document/doi/10.1515/9783110466195/html?lang=en
- 2. https://www.ldeo.columbia.edu/~martins/hydro/lectures/fluid_dynamics.html

Course Outcomes

On Completion of the Course, Students should be able to

- **CO 1:** discuss the behavior of fluids in motion.
- **CO 2:** demonstrate the changes in flow when sphere of cylinder is introduced.
- **CO 3:** estimate the applications of two dimensional flow
- **CO 4:** apply the stress components on viscous flow
- **CO 5:** solve problems in viscous flow and describe the energy dissipation.

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes

CO/PO		PO							J	PSO		
	1	2	3	4	5	6	1	2	3	4	5	6
CO1	S	S	S	M	S	S	S	M	S	S	S	S
CO2	S	S	S	M	S	S	S	M	S	S	S	S
CO3	S	S	S	M	S	S	S	M	S	S	S	S
CO4	S	S	S	M	S	S	S	M	S	S	S	S
CO5	S	S	S	M	S	S	S	M	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

N – No Correlation

Semester-IV / Elective Course-V	DIFFERENTIAL	Course Code:
(CC)	GEOMETRY	
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks:25	External Marks:75	Total Marks: 100

Cognitive Level Course Objectives	K 1 - Acquire/ Remember K2 - Understand K3 - Apply K4 - Evaluate K5 - Analyze K6 - Create The Course aims • To understand the basic concepts of space curves. • To introduce the notion of surfaces and their properties. • To learn geodesics and its properties. • To study developable, minimal and ruled surfaces.	
	 To study developable, minimal and ruled surfaces. To acquire the knowledge of compact surfaces and Hilbert's the 	orem.
UNIT	CONTENT	HOURS
UNIT I	The Theory of Space Curves: Introductory remarks about space curves - Definitions - Arc length – Tangent , normal and binormal – Curvature and torsion of a curve given as the intersection of two surfaces - contact between curves and surfaces- Tangent surface, involutes and evolutes- Intrinsic equations, Fundamental Existence Theorem for space curves - Helics (Chapter I: Sec $1-9$)	18 Hours
UNIT II	The Metric: Local Intrinsic Properties of a Surface: Definition of a surface - Curves on a surface - Surface of revolution - Helicoids - Metric- Direction coefficients - Families of curves- Isometric correspondence- Intrinsic properties.(Chapter II: Sec 1–9)	18 Hours
UNIT III	The Metric: Local Intrinsic Properties of a Surface: Geodesics - Canonical geodesic equations - Normal property of geodesics-Existence Theorems - Geodesic parallels - Geodesics curvature-Gauss-Bonnet Theorem - Gaussian curvature-Surface of constant curvature. (Chapter II: Sec 10 – 18)	18 Hours
UNIT IV	The Second Fundamental Form: Non Intrinsic Properties of a Surface: The second fundamental form- Principal curvature - Lines of curvature - Developables – Developable associated with space curves and with curves on surfaces – Minimal surfaces - Ruled surfaces. (Chapter III: Sec 1 – 8)	18 Hours
UNIT V	Differential Geometry of Surfaces: Introduction - Compact surfaces whose points are umbilicus- Hilbert's lemma - Compact surface of constant Gaussian or mean curvature - Complete surfaces - Characterization of complete surfaces - Hilbert's Theorem - Conjugate	18 Hours

points on geodesics.(Chapter IV: Sec $1-8$)	

T.J.Willmore, An Introduction to Differential Geometry, Oxford University Press, (17th Impression), New Delhi, 2002.

Reference Books:

- 1. D.T. Struik, Lectures on Classical Differential Geometry, Addison Wesley, Mass. 1950.
- 2. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, 1963.
- 3. Wihelm K lingenberg, A Course in Differential Geometry, Graduate Texts in Mathematics, Springer Verlag, 1978.
- 4. J.A. Thorpe, Elementary Topics in Differential Geometry, Under graduate Texts in Mathematics, Springer Verlag 1979

Web - Resources:

1. http://mysite.science.uottawa.ca/rossmann/Differential%20Geometry%20book_files/Diffgeo.pdf

Course Outcomes

On Completion of the Course, Students should be able to

CO1 : discuss the concept of graphs and level sets-vector fields

CO2 : analyze surfaces and vector field on surfaces.

CO3 : apply the properties of geodesics.

CO4: interpret the scope of developables, minimal and ruled surfaces.

CO5 : compute the compactness and completeness of surfaces.

Mapping of Course Outcomes with Programme Outcomes / Programme Specific Outcomes

CO/PO	PO							PSO				
	1	2	3	4	5	6	1	2	3	4	5	6
CO1	S	M	M	W	M	M	M	M	S	M	S	S
CO2	S	M	S	M	S	M	S	M	S	S	M	S
CO3	S	M	S	M	S	M	S	M	S	S	M	S
CO4	S	S	M	W	M	M	M	S	S	M	M	S
CO5	S	M	S	W	M	S	S	M	M	S	M	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

N - No Correlation

Semester-IV / Elective Course-	MATHEMATICAL MODELLING	Course Code:		
III (EC III)				
Instruction Hours: 6	Credits: 4	Exam Hours: 3		
Internal Marks:25	External Marks:75	Total Marks: 100		

	K 1 - Acquire/ Remember	
Cognitive	K2 - Understand	
Level	K3 - Apply	
Level	K4 - Evaluate	
	K5 - Analyze	
	K6 - Create	
	The Course aims	
Course	To introduce different mathematical models in ordinary differential equations.	uations.
Objectives	To study mathematical modelling of epidemics through systems of ord	
J 2 2 3 2 4 2 2	differential equations of first order.	•
	To understand mathematical modelling through linear differential equa	tions of
	second order.	
	 To develop mathematical modelling through difference equations. 	
	To learn mathematical modelling through graph theoretical models	
UNIT	CONTENT	HOURS
UNIT I	Mathematical Modelling through Ordinary Differential Equations of First Order: Mathematical Modelling Through Differential Equations – Linear Growth and Decay Models – Non-Linear Growth and Decay Models – Compartment Models – Mathematical Modelling in Dynamics Through Ordinary Differential Equations of First Order. (Chapter 2: Sec. 2.1 to 2.5)	18 Hours
UNIT II	Mathematical Modelling Through Systems of Ordinary Differential Equations of the First Order: Mathematical Modelling in Population Dynamics – Mathematical Modelling of Epidemics Through Systems of Ordinary Differential Equations of First Order – Mathematical Modelling in Economics Based on Systems of Ordinary Differential Equations of First Order - Mathematical Models in Medicines, Arms Race Battles and International Trade in Terms of Systems of Ordinary Differential Equations. (Chapter 3: Sec. 3.1, 3.2, 3.4, 3.5)	18 Hours
UNIT III	Mathematical Modelling Through Ordinary Differential Equations of Second Order: Mathematical Modelling of Planetary Motions – Mathematical Modelling of Circular Motion and Motions of Satellites – Mathematical Modelling Through Linear Differential Equations of the Second Order – Miscellaneous Mathematical Models Through Ordinary Differential Equations of Second Order. (Chapter 4: Sec.4.1-4.4)	18 Hours

UNIT IV	Mathematical Modelling Through Difference Equations: The Need for Mathematical Modelling Through Difference Equations: Some Simple Models – Basic Theory of Linear Difference Equations with Constant Coefficients – Mathematical Modelling Through Difference Equations in Economics and Finance – Mathematical Modelling Through Difference Equations in Population Dynamics and Genetics – Mathematical Modelling Through Difference Equations in Probability Theory. (Chapter 5: Sec. 5.1 to 5.5)	18 Hours
UNIT V	Mathematical Modelling Through Graphs: Situations that can be Modelled Through Graphs – Mathematical Models in Terms of Directed Graphs – Mathematical Models in Terms of Signed Graphs – Mathematical Modelling in Terms of Weighted Digraphs – Mathematical Modelling in Terms of Unoriented Graphs. (Chapter 7: Sec. 7.1 to 7.5)	18 Hours

J.N.Kapur, Mathematical Modelling, Second Edition, New Age International Private Limited, New Delhi, 2018.

Reference Book:

J.N.Kapur, Mathematical Models in Biology and Medicine, Affiliated East-West Press Pvt Limited, New Delhi.

Web - Resources:

- 1. https://people.maths.bris.ac.uk/~madjl/course_text.pdf
- 2. http://mtm.ufsc.br/~daniel/matap/IntMatMod.pdf

Course Outcomes

On Completion of the Course, Students should be able to

CO1 : create models on linear growth and decay of any system.
 CO2 : form mathematical modeling in epidemics in population.
 CO3 : design mathematical modelling in any type of motions.
 CO4 : solve problems in dynamics and genetics using modelling.
 CO5 : demonstrate various real life situations through graphs

Mapping of Course outcomes with Programme Outcomes/ Programme Specific Outcomes

CO/PO	PO							PSO				
	1	2	3	4	5	6	1	2	3	4	5	6
CO1	S	S	S	S	S	S	S	S	S	S	S	M
CO2	S	S	S	S	S	S	S	S	S	S	S	M
CO3	S	S	S	S	S	S	S	S	S	S	S	M
CO4	S	S	S	S	S	S	S	S	S	S	S	M
CO5	S	S	S	S	S	S	S	S	S	S	S	M

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

N - No Correlation